Longitudinal Space Charge Instability Simulations with elegant

M. Borland
APS Operations Division
Argonne National Laboratory
February 20, 2004

Outline

- Review of relevant theory
- Simulation method
- Test problems
 - Spreading gaussian beam
 - Density oscillations
- LCLS simulations
 - Preparing the beam
 - S2E results

Review of Theory (Z. Huang)

• Space charge impedance for r=0

$$Z(k) = \frac{Z_0 i}{k \pi r_b^2} \left[1 - \frac{k r_b}{\gamma} K_1(k r_b / \gamma) \right]$$

Review of Theory (Z. Huang)

• Wavenumber for space charge oscillations:

$$k_{SC} = \left[\frac{I_b}{\gamma^3 I_A} k \left| \frac{4 \pi Z(k)}{Z_0} \right| \right]^{\frac{1}{2}} \leq \frac{2}{r_b} \left[\frac{I_b}{\gamma^3 I_A} \right]^{\frac{1}{2}}$$

• Step-size should be:

$$\Delta z \ll Min \left[\frac{1}{k_{SC}}, \gamma / \left(\frac{d \gamma}{ds} \right) \right]$$

- **elegant** provides simulation of LSC in drifts and accelerating structures
- Both use a simple drift-kick-drift method
- New LSCDRIFT element
 - Automatically chooses step size
- Upgraded RFCW (RF Cavity + Wakes) element
 - Kick includes LSC, structure wakes, acceleration
 - User-specified number of kicks, checked for validity by program

Use FFT to compute the wake

$$W(t) = IFFT \left[FFT \left[I(t) \right] f(\omega) Z(\omega) \right]$$

- *I*(*t*) is a histogram of current with a user-specified number of bins
 - Typically use a constant number of bins so time resolution is a constant fraction of bunch length
 - Peak current used for I_b in computing k_{SC} to determine step size

- $f(\omega)$ is an optional low-pass filter to control noise
 - Essential in getting stable behavior
 - Smoothing algorithms (e.g., Savitzky-Golay) not helpful
- Typically choose number of bins so frequencies of interest are about 0.2 Nyquist or less
- Typically place the filter at 0.4 Nyquist
- Simply using fewer bins would force us to worry about details of interpolation within bins

- Must compute beam radius, r_b, to compute step size and impedance
- Present results used a guess

$$r_b = \frac{\sigma_x + \sigma_y}{2}$$

• Based on analysis for parabolic distributions, J. Wu recommends

$$r_b = 1.7 \frac{\sigma_x + \sigma_y}{2}$$

• This is now the default in the code

Spreading of Gaussian Beam

Spreading of Gaussian Beam

LSC Oscillation Tests

- Start with an initially flat-top distribution
 - Gaussian ends to avoid strong end fields
- Impose a 0.5% sinusoidal density modulation
- Noise control
 - Track with LSC using 20 bins per wavelength: modulation is at 0.1 Nyquist
 - Low pass filter at 0.2 Nyquist
 - 8 million particles (~2200 per bin)
 - Halton sequence (quiet start) particle generator
- 4MP and 1% modulation gives same results

LSC Oscillations: Initial Distribution

Analysis Method

- elegant provides current profile at intervals
- To determine modulation amplitude
 - Select central 50λ of the profile
 - Important in eliminating end effects
 - Use polynomial fit to remove any gross variation
 - Apply digital filter to pass only $[0.9, 1.1]\lambda$
 - Use NAFF method to determine the amplitude

Example for $\lambda = 10 \mu m$

Example for $\lambda = 10 \mu m$

Results for Various Wavelengths

Symbols show expected quarter wavelength for SC oscillation

Results with Acceleration

Longitudinal Space Charge Instability Simulations with elegant

M. Borland, 2/20/04

LCLS Simulations

- Used 10JUN03 Design from P. Emma
- Started at 135 MeV with PARMELA output from C. Limborg
- Created smoothed distribution with density modulation and more particles
- Included LSC in linac structures only, with 2000 bins and low-pass at 0.4 Nyquist
- Included wakes, CSR, ISR, etc.

Beam Preparation

- PARMELA-generated beam has
 - Only 200k particles
 - Numerical noise that will drive instability
 - Need to increase the number of particles and remove the noise
- Time distribution
 - Make histogram of t and smooth heavily
 - Multiply by sinusoidal density modulation (±1%)
 - Sample using quiet-start sequence to generate 8M values of t

Beam Preparation

- Make fits to PARMELA data to get p(t) and $\sigma_{_{p}}(t)$
 - Evaluate p for each new particle t
 - Quiet-sample $\sigma_p(t)$ to create local momentum spread
- For transverse
 - Compute projected rms parameters
 - Quiet-sample for each new particle
 - Should eventually try using local beam moments

$\lambda=15\mu m$: Initial Distribution

Initial density modulation: 1% at 15 μ m

$\lambda=15\mu m$: Initial Distribution

Residual of fit for central 25% of beam

λ =15 μ m: BC1 Entrance

$\lambda = 15 \mu m$: BC1 Exit

λ =15 μ m: BC2 Entrance

Residual of fit for entire beam

$\lambda = 15 \mu m$: BC2 Exit

$\lambda = 15 \mu m$: DL2 Exit

$\lambda = 15 \mu m$: DL2 Exit

Normal phase-space view

λ =60 μ m: DL2 Exit

λ =200 μ m: DL2 Exit

Core Momentum Spread vs Wavelength

Effect of "Beam Heater": 15μm with ±0.04% Energy Modulation

Comparison of Wiggler with Heater Case

Conclusions

- The model provides a plausible simulation of longitudinal space charge
 - Noise is controlled
 - Oscillations have expected behavior
- Execution is reasonably fast
- LCLS simulations
 - Predict a potentially serious problem
 - Indicate that beam-heater is a likely solution